If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+28x-233=0
a = 3; b = 28; c = -233;
Δ = b2-4ac
Δ = 282-4·3·(-233)
Δ = 3580
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3580}=\sqrt{4*895}=\sqrt{4}*\sqrt{895}=2\sqrt{895}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(28)-2\sqrt{895}}{2*3}=\frac{-28-2\sqrt{895}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(28)+2\sqrt{895}}{2*3}=\frac{-28+2\sqrt{895}}{6} $
| w^2+6w-26=0 | | j=75-33 | | 6f=7f+10 | | j=75−33 | | 3x-1x=48 | | -7a+1=5a | | m-42=12 | | 5x-18=-3x+6 | | 8-(4n-4)=6-5n | | 5x-18=-3x | | s=72-63 | | 3r+6=r+28 | | 0.75x-9=15 | | 53=u-3 | | y+8y+15=0 | | 3x-2x+15^2=240 | | w=2(43) | | 54-42=b | | 54−42=b | | 5.59x+3.47=56.79 | | (5x+3)(5x-3)=0 | | 5h+2/6=7 | | z=2(31) | | -8k+4k=12-12 | | -x+16=2(4-x) | | 6(3-5a)=-162 | | 2/3x+1=1.6x-7 | | r=78+16 | | 49=9y+4 | | 3x-2x+15^=240 | | 2x-(1-x)=9+3(5-x) | | q=32/4 |